
A theory for one-dimensional asynchronous chemical waves

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 3721

(http://iopscience.iop.org/1751-8121/40/13/026)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/13
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 3721–3728 doi:10.1088/1751-8113/40/13/026

A theory for one-dimensional asynchronous chemical
waves

A Bhattacharyay

Dipartimento di Fisika ‘G. Galilei’, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy
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Abstract
We present a theory for an experimentally observed phenomenon of one-
dimensional asynchronous waves. It has been proposed that two oppositely
moving travelling wave states can localize an oscillatory core structure. A class
of even and odd parity localized solution of the same system has been explicitly
shown. It has been argued that a combination of these local and global states
in an extended system can produce asynchronous waves. We also produce
numerical results in support of our analytic predictions.

PACS numbers: 87.10.+e, 47.70.Fw

One-dimensional asynchronous chemical waves (or 1D spirals) were first reported by
J-J Perraud et al [1] in 1993. An explanation of this phenomenon had been put forward on
the basis of bi-stability of Turing and Hopf states and non-variational effects [1]. Historically,
in those days when the above-mentioned experiment was carried out, studying droplet of
other states inside a global one under uniform conditions was a topic of tremendous interest.
Presumably, being influenced by those new observations [2–5], the bi-stability of Turing and
Hopf modes and their interaction was considered to be the basic underlying principle on
which a possible explanation of experimentally observed 1D spirals was given. Such localized
droplets of global states near a Hopf–Turing instability boundary have also been analysed in
many subsequent papers [6–12]. However, a proper understanding of the true nature of the
parity breaking core which generates asynchronous waves on opposite sides is still lacking. It
is also important to have a proper understanding of this novel phenomenon of asynchronous
waves because such a thing shows up near a Hopf instability threshold where behaviours of
dynamical systems are quite universal. In the present paper we are going to demonstrate an
alternative scenario for 1D spiral (asynchronous waves) generation. We are going to present
our alternative theory on the basis of a complex Ginzburg–Landau-type amplitude equation
(CGLE). We consider the simplest form of such a universal amplitude equation to demonstrate
our results. In what follows, we argue that the global travelling wave solutions of a CGLE
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can restrict some oscillatory odd-parity localized solutions of the linear CGLE from spreading
out. When restricted to a small region, these localized solutions (of essentially the linear
equation) do not get perturbed by the nonlinearity of the system and can stay longer. In return,
the odd-parity oscillating core helps oppositely moving travelling waves on two sides of it
remain asynchronous to each other. We also illustrate this simple mechanism of formation of
asynchronous waves by numerical simulation of the CGLE.

Let us first present a short description of what people have already seen experimentally
[1]. 1D spiral pattern was experimentally observed in CIMA (chlorite iodide malonic acid)
reaction. In such a reaction one can control transition from Hopf (oscillatory) to Turing
(stationary) states by tuning the concentration of the starch or the malonic acid. Similar
transitions between a stationary periodic (Turing) and a travelling wave like Hopf mode were
observed by lowering the starch concentration in the chemical reactor or by keeping a low
starch concentration and then increasing the malonic acid concentration. Since it is difficult to
change the starch concentration of the reactor, the malonic acid concentration had been used as
the bifurcation parameter and was tuned. It had been observed that when the Hopf state takes
up from the Turing state, very often there remain a few spots (considered to be reminiscent
of the previous Turing state from the time-averaged concentration profile [1]) acting as the
source of one-dimensional anti-synchronous wave trains. Bands of maximum intensity were
spreading alternatively towards right and left of the central core with a time delay. At a
particular moment of time these asynchronous wave trains look like a section of a 2D spiral
on a line passing through its core and that is why the other name 1D spiral. The very basic and
primary question that arises in connection is exactly who breaks the parity sitting in the middle
and how. The experiment suggests the symmetry breaking agent is local and endogenous in
nature [1]. Our purpose in this paper is to identify and show the localized structure that can
break parity and put forward plausible mechanism as to how global asynchronous waves are
supported by this localized structure.

The CGLE with a cubic nonlinearity looks like

∂H

∂t
= εH + (Dr + iDi)

∂2H

∂x2 − (βr + iβi)|H |2H. (1)

This is a simple amplitude equation at a Hopf instability threshold. Near the instability
threshold, the dynamics of slow amplitude modes is universal. Since, the observed
phenomenon of 1D spirals appears in a region of Hopf phase and close to the instability
boundary we employ such an equation. Equation (1) has a one-parameter family of travelling
wave solutions of the form H = H0 ei(ωt−kx) where the amplitude and the frequency of
oscillation are related as

|H |2 = Diε + Drω

Diβr − Drβi

. (2)

Here, ε is the bifurcation parameter—meaning that by tuning ε one can cross the primary
instability boundaries. It is important to note that equation (1) is invariant under a change in
sign of H. So, the opposite parity states are solutions of this equation on the same footing.
This equation is also invariant when H and x change sign together. So, one can always expect
to have parity-inverted states on the two sides of the origin. At this point, we propose that
such a pair of opposite parity travelling wave states are connected to a localized structure
of appropriate form at the origin. The form of this localized entity will be revealed in what
follows keeping in mind that it has to match with the bounding states which keeps it localized

The CGLE has the form of a linear Schrödinger equation when we neglect the nonlinear
term. As we know a harmonic well potential localizes the solutions in a Gaussian envelop,
we expect to have the same spatial solution from the linear CGLE. We neglect the nonlinear
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part on the basis that we are after a localized solution of the form x√
b

e−x2/2b. At large b and
considering that travelling wave states of the full CGLE will help keep the central core bound
in a small region at the origin. The CGLE (equation (1)) without nonlinear term can still have
a solution H eiωt . With this ansatz in place we can write equation (2) as

iωH +
∂H

∂t
= εH + (Dr + iDi)

∂2H

∂x2 .

Let us localize the solution of this linear equation with a Gaussian envelop as H = H e
−x2

2b .
With this consideration the above equation changes to

(Dr + Di)

[
∂2H

∂x2 e
−x2

2b − 2x

b

∂H

∂x
e

−x2

2b +
x2H

b2
e

−x2

2b − H

b
e

−x2

2b

]
+ (ε − iω)H e

−x2

2b = 0.

The Equations result by equating real and imaginary parts look like

Dr

[
∂2H

∂x2 − 2x

b

∂H

∂x
+

x2H

b2
− H

b

]
+ εH = 0

and

Di

[
∂2H

∂x2 − 2x

b

∂H

∂x
+

x2H

b2
− H

b

]
− ωH = 0.

Now, considering the one that comes from the real parts and rearranging the terms we get

Dr

∂2H

∂x2 − 2Drx

b

∂H

∂x
+

Drx
2

b2
H +

(
ε − Dr

b

)
H = 0. (3)

We are looking for a polynomial solution of the dimensionless amplitude H. So,
nondimensionalize the length as z = x/

√
b, which is also suggested by the form of the

above equation. We also drop the term containing x2/b2 which is small for large b where
x2

b2 ∼ 1
b
. Actually, our purpose is served with the expected Hermite polynomial solution of

order unity since it has odd parity and we need not consider higher order terms. Thus, we get
the equation

∂2H

∂z2 − 2z
∂H

∂z
+

b

Dr

(
ε − Dr

b

)
H = 0. (4)

The linear equation (4) admits solutions which are Hermite polynomials and a solution
of order zero is obtained when

(
ε − Dr

b

)
is equal to zero. When ε − Dr

b
= 2Dr

b
it admits

a solution same as the Hermite polynomial of order unity. Now, we have explicitly got a
small amplitude-localized asymmetric solution of the form x√

b
e−x2/2b which oscillates with a

frequency ω. One important thing about this linear localized solution is that it can always have
an arbitrary constant factor which can also keep it small apart from the requirement of large
b. So, in a number of different ways one can justify the non-functioning of the nonlinear term
for such a localized solution. Before we show the asynchronous wave solutions we consider
the equation got from equating the imaginary terms of the CGLE. If both the equations are
to have the same asymmetric localized spatial solutions we get a selection for the oscillation
frequency given by

ω = −εDi

Dr

. (5)

Now, take the travelling wave state H0 ei(ωt−kx) of the full CGLE (equation (1)) into
consideration. This travelling wave state be present on the positive side of the x-axis
(right-hand side of the core) having the localized core at the origin. The localized solution in
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the middle sets the boundary condition on the left-hand side boundary of this travelling wave
state. This can be done keeping in mind that the amplitude of the travelling wave solution is a
function of the parameters of the system and in reality such a matching can always happen by
tuning the parameters. Consider the ω of the travelling wave to be the same as the oscillation
frequency of the central asymmetric core. Now, putting the expression of ω (equation (5))
of the oscillating core in that of the amplitude (equation (2)) of the travelling wave one
gets

|H |2 = Di(ε − εl)

Diβr − Drβi

, (6)

where εl is the local value of the bifurcation parameter where the core has formed. With
the numerator of equation (6) positive one can say that Diβr > Drβi is the condition for
frequency matching. It is also evident that for the existence of such a combination of the
linear and nonlinear solutions a local variation in the bifurcation parameter is essential. In the
results of numerical simulation it will be shown that with this local variation of the bifurcation
parameter such a co-existence of linear and nonlinear states is more stable. It is important
to note that in the actual experiment [1] the bifurcation parameter was malonic acid feeding
rate. It is very difficult if not impossible to maintain exactly the same feeding rate along
the whole length of the reactor. As a result there can always be localized fluctuations in the
bifurcation parameter. These regions can develop into endogenous sources (or core) from
which asynchronous waves generate.

Now, apply the boundary condition to the wave that moves in the positive x-direction from
the point x = C (say), with the localized core extending upto the point x = C. The amplitude
of the travelling wave (H0r ) is given by

H0r = C√
b

e−C2/2b+ikC. (7)

By matching a similar wave moving towards negative x-direction from near the left-hand side
of the asymmetric localized core we will get its amplitude Hl as

H0l = − C√
b

e−C2/2b+ikC. (8)

The boundary conditions on the travelling wave states cause a clear phase difference of π

in the left and the right moving waves due to obvious reasons (k and C are negative for the
left moving wave). Apart from that phase difference everything else are identical on the both
sides of the origin. This is actually no surprise given the fact that the CGLE is invariant
under the inversions H = −H and x = −x. The eikC term in the amplitude ensures that the
points x = ±C are the origin of the travelling wave states and the oppositely moving waves
exist beyond them. Simple matching of solutions shown here in order to demonstrate a phase
inversion of travelling wave states might be simplistic in comparison with what happens in
reality. Nevertheless, whatever be the detailed mechanism the symmetry suggests that the
global wave states on the two sides of the core should remain parity inverted. The more
important point here is the stability of such a combination. In what follows we establish the
stability of such a system by numerical simulation.

To justify the analytic arguments we simulated the full nonlinear CGLE. A finite difference
scheme (Crank–Nicolson formula) with implicit method of integration has been employed.
The nonlinearity is tackled by the predictor corrector rule. The numerical integration has
been performed on a linear lattice of 2001 points with a small parity breaking initial seed
symmetrically at a very small region (five lattice points) on both sides of the centre of the lattice.
We have employed no flux boundary conditions. Prominent asynchronous waves develop and
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Figure 1. The concentration profile of the asynchronous wave generated from an oscillatory
localized structure. The bifurcation parameter at a core region in the middle is 0.02 and elsewhere
it is 0.05.

Figure 2. The concentration profile of the asynchronous wave generated from an oscillatory
localized structure. The bifurcation parameter is 0.02 everywhere.

spread from asymmetric oscillatory core at the middle. Figure 1 shows the space time plot of
the concentration waves asynchronously moving in the opposite sides. The parameter values
at which the simulation has been done are (Dr,Di) = (0.2, 2.0), (βr , βi) = (0.005, 0.05) and
ε = 0.02 in a small core at the middle where the initial seed has been given. In the rest of
the lattice ε = 0.05. We see that asynchronous wave trains generated by the oscillatory core
remains stable for a wide range of time. Similar patterns are observed on some range of the
parameter values about that mentioned. Now, keeping all other parameters exactly the same
if we make ε = 0.02 everywhere on the lattice we get the result shown in figure 2. Due to
the action of the seed in the middle the oscillatory core is generated which in turn produces
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Figure 3. The concentration profile of the asynchronous wave generated from an oscillatory
localized structure. The bifurcation parameter is 0.05 everywhere.

asynchronous waves, but these waves are dying out early. Figure 3 shows another plot at
ε = 0.05 everywhere with all other parameters being the same. Here, the asynchronous wave
dies out even early. It is important to note that in this case the ε at the core is 2 1

2 times that
of figure 1. As a result the oscillation frequency of the central core structure should increase
by that same factor (see equation (5)). Since, it is this core that generates the travelling
waves, figure 3 has bright and dark lines more closely spaced which clearly demonstrate a
larger frequency. Instead of having the same value of the ε everywhere except in the middle
figure 1 corresponds to smaller frequency waves. To demonstrate this frequency variation
with the variation of the bifurcation parameter in the middle we have plotted figure 3 at the
same time scales as the other ones.

To reveal the nature of the central core more clearly, we have plotted a few snapshots
of the core part in figure 4. Here, we see almost a half period of its oscillation. In this
figure time runs up-wards through the frames in steps of equal size (10 unit). The parameter
values for figures 4 and 1 are the same. we can see an almost straight line graph (continuous)
oscillating in the middle. The amplitude of oscillation is shown by the dotted curve which is
every where almost constant except in the middle where it symmetrically goes to zero. This is
quite expected for the form of localized solution predicted. As we have mentioned earlier, the
simple matching of two solutions (equations (7) and (8)) may be simplistic. It is also difficult
to identify exactly at which point (C) the local and global states meet and also determining the
exact value of the parameter b.

We conclude by saying that an asymmetric localized oscillatory structure has been
identified as the parity breaking agent for asynchronous one-dimensional chemical waves.
Based on this observation we put forward an alternative theory. The present theory rests on
the principle of matching and stabilizing localized linear solutions by nonlinear global states
of a general nonlinear model in an extended system. The global states keep the central core
localized in a small region and the central oscillatory core helps global states remain parity
inverted. Localized fluctuations in the bifurcation parameter are needed to create and sustain
such a phenomenon and thus the endogenous nature of the 1D spirals are explained. Such a
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Figure 4. Snapshots of the central oscillatory region at equal time gaps.

situation is very general to our belief and can explain a lot of complex phenomenon as observed
in extended nonlinear systems. The linear part with its characteristics symmetry and parity
can interact with the nonlinear solutions to generate a range of complexities. The present
theory also predicts the presence of synchronous waves originating from symmetric sources
and sinks as the asymmetric ones on the same footing (corresponding to Hermite polynomials
of even order). Even, the existence of higher order localized structures is quite plausible and
it would be interesting to investigate experimentally and numerically the role played by these
structures in an extended system.
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